How many $6 -$ digit numbers can be formed from the digits, $0,1,3,5,7$ and $9$ which are divisible by $10$ and no digit is repeated?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

A number is divisible by $10$ if its units digits is $0 .$

Therefore, $0$ is fixed at the units place.

Therefore, there will be as many ways as there are ways of filling $5$ vacant places $\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed0\,$ in succession by the remaining $5$ digits (i.e., $1,3,5,7$ and $9$ ).

The $ 5$ vacant places can be filled in  $5 !$ Ways.

Hence, required number of $6 -$ digit numbers $=5 !=120$

Similar Questions

$\left( {\begin{array}{*{20}{c}}n\\{n - r}\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}n\\{r + 1}\end{array}} \right)$, whenever $0 \le r \le n - 1$is equal to

Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$

If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$

and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :

  • [JEE MAIN 2021]

A group of $9$ students, $s 1, s 2, \ldots, s 9$, is to be divided to form three teams $X, Y$ and, $Z$ of sizes $2,3$ , and $4$, respectively. Suppose that $s_1$ cannot be selected for the team $X$, and $s_2$ cannot be selected for the team $Y$. Then the number of ways to form such teams, is. . . .

  • [IIT 2024]

$6$ different letters of an alphabet are given. Words with four letters are formed from these given letters. Then the number of words which have atleast one letter repeated and no two same letters are together, is

For $2 \le r \le n,\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$ is equal to

  • [IIT 2000]