આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ નહિ અને $B$ નહિ) શોધો.
$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$
જો $A$ અને $B$ બે ઘટનાઓ હોય, તો નીચેના પૈકી કઈ સાચી નથી.
ધારો કે, $A, B, C$ એ $3$ નિરપેક્ષ ઘટનાઓ એવી છે કે જેથી $P(A)\,\, = \,\,\frac{1}{3}\,,\,\,P(B)\,\, = \,\,\frac{1}{2}\,,\,\,P(C)\,\, = \,\,\frac{1}{4}\,.$ $3$ ઘટનાઓ પૈકી ચોક્કસ $2$ ઘટનાઓ બનવાની સંભાવના શોધો.
એક સમતોલ પાસાને એક વખત ઉછાળતાં ઉપરની બાજુએ $3$ થી મોટો પૂર્ણાક મળે તે ઘટના અને $5$ થી નાનો પૂર્ણાક મળે તે ઘટના $B$ છે. $P(A \cup B) = .....$
$A$ અને $B$ ઘટનાઓ પૈકી ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના $0.6$ છે.જો $A$ અને $B$ ઘટનાઓ એકસાથે બંને તેની સંભાવના $0.2$ હોય,તો $P\,(\bar A) + P\,(\bar B) = $
એક ખોખામાં $10 $ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. બંને દડા લાલ રંગના હોય તેની સંભાવના શોધો.