આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ નહિ અને $B$ નહિ) શોધો.
$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$
$A$ એ સત્ય બોલો તેની સંભાવના $\frac{4}{5}$ છે અને $B$ એ સત્ય બોલે તેની સંભાવના $\frac{3}{4}$ છે,તો એક સત્ય વિધાન વિશે બંને ને બોલવાનુ કહેતા બંનેમાં વિરોધાભાસ થાય તેની સંભાવના મેળવો.
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, તો આપેલ પૈકી કયું વિધાન અસત્ય છે .
$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P \left( A \cap B ^{\prime}\right)$ શોધો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |