$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।
$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$
यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब
मान लें $A$ और $B$ स्वतंत्र घटनाएँ हैं तथा $P ( A )=0.3$ और $P ( B )=0.4 .$ तब $P ( A \cap B )$ ज्ञात कीजिए।
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $
दो घटनाओं $A$ और $B$ के लिए $P(A) = x$, $P(B) = y,$ $P(A \cap B) = z,$ तब $P(\bar A \cap B)$ का मान है