$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।
$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.72$
$=0.28$
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( B \cap A ^{\prime}\right)$
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ स्वतन्त्र हों, तो $x= $
यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E -$ नहीं और $F-$ नहीं)।
पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है