Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find  $P($ neither $A$or $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$

$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$

$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$=1-0.72$

$=0.28$

Similar Questions

Probability that a student will succeed in $IIT$ entrance test is $0.2$ and that he will succeed in Roorkee entrance test is $0.5$. If the probability that he will be successful at both the places is $0.3$, then the probability that he does not succeed at both the places is

If $A$ and $B$ are arbitrary events, then

Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is

  • [JEE MAIN 2019]

The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are

Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that  the problem is solved.