$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ या $B$ ) का मान ज्ञात कीजिए।
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
दो घटनाओं $A$ और $B$ के लिए $P(A) = x$, $P(B) = y,$ $P(A \cap B) = z,$ तब $P(\bar A \cap B)$ का मान है
यदि दो घटनाओं में $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ तब $A$ तथा $B$ होंगी
$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।
घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है
यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि
$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$
$-P(B \cap C)+P(A \cap B \cap C)$