$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ या $B$ ) का मान ज्ञात कीजिए।
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है
दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से कम से कम एक परीक्षा में उत्तीर्ण नहीं होगा।
यदि $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ तथा $P\,(A \cup B) = \frac{3}{4},$ तो $P\,(A \cap B) = $