एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When a die is thrown, the sample space ( $S$ ) is

$\mathrm{S}=\{1,2,3,4,5,6\}$

Let $A:$ the number is even $=\{2,4,6\}$

$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$

$B:$ the number is red $=\{1,2,3\}$

$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{2}$

$\therefore $ $A \cap B=\{2\}$

$P(A B)=P(A \cap B)=\frac{1}{6}$

$P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$

$\Rightarrow $  $P(A) \cdot P(B) \neq P(A B)$

Therefore, $A$ bad $B$ are not independent.

Similar Questions

एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।

एक पासे को तीन बार उछाला जाता है तो कम से कम एक बार विषम संख्या प्राप्त होने की प्रायिकता ज्ञात कीजिए।

एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।

यदि $A$ तथा $B$ दो स्वतंत्र घटनाएँ हो, जहाँ $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ तो $P$ (न $A$ और न $B$) ज्ञात कीजिए

एक प्रवेश परीक्षा को दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायकिता $0.8$ है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता $0.7$ है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता $0.95$ है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है ?