આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અથવા $B)$ શોધો.
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
એન્ટી એરક્રાફટ ગન વડે દુશ્મનના વિમાનો પહેલાં, બીજા અને ત્રીજા પ્રહાર વડે તોડી પાડવાની સંભાવના અનુક્રમે $0.6, 0.7$ અને $0.1$ છે. તો ગન વડે વિમાનને તોડી પાડવાની સંભાવના કેટલી થાય ?
જો $A$ અને $B$ એ સ્વતંત્ર ઘટના છે કે જેથી $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} $ થાય છે. તો $\mathrm{p}$ ની મહતમ કિમંત મેળવો કે જેથી $\mathrm{P}$ ($\mathrm{A}, \mathrm{B}$ પૈકી એક્જ ઘટના ઉદભવે $)=\frac{5}{9}$ .
એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો.જો તે અંગ્રેજી સમાચારપત્ર વાંચતો હોય, તો તે હિન્દી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.
જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
ધારો કે $A, B, C $ જોડયુક્ત રીતે નિરપેક્ષ ઘટના હોય, જ્યાં $P(C)>0$ અને
$P(A \cap B \cap C)=0 $ હોય, તો $P(A' \cap B'|C) $ બરાબર શું થાય ?