Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$ or $B)$
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is
If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
If $A, B, C$ are three events associated with a random experiment, prove that
$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?
$\mathrm{E}:$ ' the card drawn is black '
$\mathrm{F}:$ ' the card drawn is a king '
If $A$ and $B$ are two independent events, then $A$ and $\bar B$ are