Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$ or $B)$
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively
If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $
If $A$ and $B$ are two events such that $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, then the incorrect statement amongst the following statements is
If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5},$ find $P(A \cap B)$ if $A$ and $B$ are independent events
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.