Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$ or $B)$
It is given that $P(A)=0.3, P(B)=0.6$
Also, $A$ and $B$ are independent events.
$P(A$ or $B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.3+0.6-0.18$
$=0.72$
If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then
If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are
Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is
From the employees of a company, $5$ persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows :
S.No. | Name | Sex | Age in years |
$1.$ | Harish | $M$ | $30$ |
$2.$ | Rohan | $M$ | $33$ |
$3.$ | Sheetal | $F$ | $46$ |
$4.$ | Alis | $F$ | $28$ |
$5.$ | Salim | $M$ | $41$ |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over $35$ years?
Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first