Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$  or $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(A)=0.3, P(B)=0.6$

Also, $A$ and $B$ are independent events.

$P(A$  or $B)=P(A \cup B)$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=0.3+0.6-0.18$

$=0.72$

Similar Questions

If an integer is chosen at random from first $100$ positive integers, then the probability that the chosen number is a multiple of $4$ or $6$, is

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ ' the card drawn is a king and queen '

$F:$  ' the card drawn is a queen or jack '

In a certain population $10\%$ of the people are rich, $5\%$ are famous and $3\%$ are rich and famous. The probability that a person picked at random from the population is either famous or rich but not both, is equal to

For three events $A,B $ and $C$  ,$P ($ Exactly one of $A$ or $B$ occurs$)\, =\, P ($ Exactly one of $C$ or $A$ occurs $) =$ $\frac{1}{4}$ and $P ($ All the three events occur simultaneously $) =$ $\frac{1}{16}$ Then the probability that at least one of the events occurs is :

  • [JEE MAIN 2017]