नीचे दो कथन दिये गये है: एक को अभिकथन $A$ तथा दूसरे को कारण $R$ से चिन्हित किया जाता है। अभिकथन $A$ : $(5 \pm 0.1) \mathrm{mm}$ त्रिज्या एवं एक निश्चित घनत्व की एक गोलाकार वस्तु एक नियत घनत्व के द्रव में गिर रही है। इसके सीमान्त वेग की गणना में प्रतिशत त्रुटि $4 \%$ है।

कारण $R$ : द्रव में गिरती हुई गोलाकार वस्तु का सीमान्त वेग इसकी त्रिज्या के व्युत्क्रमानुपाती होता है। उपरोक्त कथनों के संदर्भ में, नीचे दिये गये विकल्पों में से सही उत्तर चुनिए।

  • [JEE MAIN 2023]
  • A

    दोनों $A$ तथा $R$ सही हैं परन्तु $R, A$ की सही व्याख्या नहीं है।

  • B

    दोनों $A$ तथा $R$ सही. हैं एवं $R, A$ की सही व्याख्या है।

  • C

    $A$ गलत है परन्तु $R$ सही है।

  • D

    $A$ सही है परन्तु $R$ गलत है।

Similar Questions

एक निकाय की समय $t$ पर ऊर्जा $E(t)=A^2 \exp (-\alpha t )$ फलन द्वारा दी जाती है, जहाँ $\alpha=0.2 s ^{-1}$ हैं। $A$ के मापन में $1.25 \%$ की प्रतिशत त्रुटि है। यदि समय के मापन में $1.50 \%$ की त्रुटि है तब $t =5 s$ पर $E ( t )$ के मान में प्रतिशत त्रुटि होगी।

  • [IIT 2015]

दिया है प्रतिरोध $R =$$\frac{V}{i}$ जहाँ $V= 100$ $ \pm 5$ वोल्ट तथा $i = 10$ $ \pm 0.2$ ऐम्पियर है, तो $R$ में कुल त्रुटि ......... $\%$ होगी

एक आयताकार कमरे की लम्बाई और चौड़ाई क्रमश: $3.95 \pm 0.05 \,m$ एवं $3.05 \pm 0.05 \,m$ मापी गयी है. कमरे के फर्श का क्षेत्रफल ..................... $m^2$ होगा

  • [KVPY 2016]

निम्न प्रेक्षणों को कंशिकीय विधि से पानी का पृष्ठ तनाव $T$ नापने के लिये प्रयोग किया जाता है।

कंशिकीय नली का व्यास, $D=1.25 \times 10^{-2}\, m$

पानी का चढ़ाव, $h=1.45 \times 10^{-2}\, m$

$g=9.80 \,m / s ^{2}$ तथा सरलीकृत सम्बन्ध $T=\frac{ rhg }{2} \times 10^{3} \,N / m$, को उपयोग करते हुए पृष्ठ तनाव में सम्भावित त्रुटि का निकटतम मान ......... $\%$ होगा

  • [JEE MAIN 2017]

एक बेलन की लम्बाई $0.1 \,cm$ अल्पतमांक की मीटर छड़ से मापी जाती है। इसका व्यास $0.01\, cm $ अल्पतमांक के वर्नियर कैलीपर्स से मापा जाता है। यदि बेलन की लम्बाई $5.0 \,cm$ तथा त्रिज्या $2.0 \,cm$ हो तो इसके आयतन की गणना में प्रतिशत त्रुटि ......... $\%$ होगी