$\tan 5\theta = \cot 2\theta $ નો વ્યાપક ઉકેલ મેળવો.
$($ જ્યાં $n \in Z)$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{{14}}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{5}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{2}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{3}$
$\tan \frac{\pi}{8}$ ની કિંમત શોધો.
$\sin 7\theta = \sin 4\theta - \sin \theta $ અને $0 < \theta < \frac{\pi }{2}$ તેવી $\theta $ ની કિમતો મેળવો.
જો $(1 + \tan \theta )(1 + \tan \phi ) = 2$, તો $\theta + \phi =$ .....$^o$
ધારો કે $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {}$. જો $T =\sum_{\theta \in S } \cos 2 \theta$ હોય. તો $T + n ( S )$ = ...............
સમીકરણ $\tan 3x = 1$ નો વ્યાપક ઉકેલ મેળવો.