For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
$({a^2} + {b^2})(|{z_1}| + |{z_2}|)$
$({a^2} + {b^2})(|{z_1}{|^2} + |{z_2}{|^2})$
$({a^2} + {b^2})(|{z_1}{|^2} - |{z_2}{|^2})$
None of these
If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is
The amplitude of $0$ is
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is
The value of $|z - 5|$if $z = x + iy$, is