For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]
  • A

    $({a^2} + {b^2})(|{z_1}| + |{z_2}|)$

  • B

    $({a^2} + {b^2})(|{z_1}{|^2} + |{z_2}{|^2})$

  • C

    $({a^2} + {b^2})(|{z_1}{|^2} - |{z_2}{|^2})$

  • D

    None of these

Similar Questions

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

The amplitude of $0$ is

If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if

The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is

  • [AIEEE 2008]

The value of $|z - 5|$if $z = x + iy$, is