If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is
$1$
$0$
$1/2$
None of these
If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false
Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . .
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if