The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is

  • [AIEEE 2008]
  • A

    $ - \frac{1}{{i - 1}}$

  • B

    $\;\frac{1}{{i + 1}}$

  • C

    $\; - \frac{1}{{i + 1}}$

  • D

    $\;\frac{1}{{i - 1}}$

Similar Questions

The product of two complex numbers each of unit modulus is also a complex number, of

The solutions of equation in $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ are $(i = \sqrt{-1})$

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]

If $z$ and $w$ are two complex numbers such that $|zw| = 1$ and $arg(z) -arg(w) =\frac {\pi }{2},$ then

  • [JEE MAIN 2019]

If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is

  • [IIT 2003]