किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]
  • A

    $({a^2} + {b^2})(|{z_1}| + |{z_2}|)$

  • B

    $({a^2} + {b^2})(|{z_1}{|^2} + |{z_2}{|^2})$

  • C

    $({a^2} + {b^2})(|{z_1}{|^2} - |{z_2}{|^2})$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $z$ तथा किसी दूसरी सम्मिश्र संख्या के कोणांक का योग $\pi $ हो, तब दूसरी सम्मिश्र संख्या को लिखा जा सकता है

यदि $z$ एक पूर्णत: अधिकल्पित संख्या इस प्रकार हो, कि ${\mathop{\rm Im}\nolimits} (z) > 0$, तब $arg(z)$=

$1 + i$ का संयुग्मी है

यदि $z = 3 + 5i,\,\,$तब $\,{z^3} + \bar z + 198 = $    

यदि ${z_1}$व${z_2}$दो सम्मिश्र संख्यायें इस प्रकार हों कि ${z_1} \ne {z_2}$ एवं  $|{z_1}|\, = \,|{z_2}|$. यदि ${z_1}$में धनात्मक वास्तविक भाग है एवं ${z_2}$ में ऋणात्मक काल्पनिक भाग है, तो $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$हो सकता है          

  • [IIT 1986]