The amplitude of $0$ is
$0$
$\pi /2$
$\pi $
None of these
If $a > 0$ and $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$, has magnitude $\sqrt {\frac{2}{5}} $, then $\bar z$ is equal to:
The values of $z$for which $|z + i|\, = \,|z - i|$ are
$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is