The value of $|z - 5|$if $z = x + iy$, is
$\sqrt {{{(x - 5)}^2} + {y^2}} $
${x^2} + \sqrt {{{(y - 5)}^2}} $
$\sqrt {{{(x - y)}^2} + {5^2}} $
$\sqrt {{x^2} + {{(y - 5)}^2}} $
If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals
Let $z_1$ and $z_2$ be two complex number such that $z_1$ $+z_2=5$ and $z_1^3+z_2^3=20+15 i$. Then $\left|z_1^4+z_2^4\right|$ equals-
If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then
Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to