કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:
$a,b,c$ એ સમગુણોતર શ્રેણીમાં છે.
$b,c,a$ એ સમગુણોતર શ્રેણીમાં છે.
$b,c,a$ એ સમાંતર શ્રેણીમાં છે.
$a,b,c$ એ સમાંતર શ્રેણીમાં છે.
શ્રેણી $2, 5, 8, 11,…..$ ના $n$ પદોનો સરવાળો $60100$ હોય, તો $n = …..$
એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે?
જો $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે $a, b, c$ સમાંતર શ્રેણીમાં છે.
જો સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn^2$ હોય, તો આ $n$ પદોના વર્ગનો સરવાળો કેટલો થાય ?