જો $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે $a, b, c$ સમાંતર શ્રેણીમાં છે.
It is given that $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.$
$\therefore b\left(\frac{1}{c}+\frac{1}{a}\right)-a\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)$
$\Rightarrow \frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}$
$\Rightarrow \frac{b^{2} a+b^{2} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}$
$\Rightarrow b^{2} a-a^{2} b+b^{2} c-a^{2} c=c^{2} a-b^{2} a+c^{2} b-b^{2} c$
$\Rightarrow a b(b-a)+c\left(b^{2}-a^{2}\right)=a\left(c^{2}-b^{2}\right)+b c(c-b)$
$\Rightarrow a b(b-a)+c(b-a)(b+a)=a(c-b)(c+b)+b c(c-b)$
$\Rightarrow(b-a)(a b+c b+c a)=(c-b)(a c+a b+b c)$
$\Rightarrow b-a=c-b$
Thus, $a, b$ and $c$ are in $A.P.$
એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં $Rs.$ $100 $ ભરે છે. જો તે દર મહિને હપતાની રકમમાં $Rs \,5$ વધારે ભરે, તો તેના $30$ માં હપતામાં કેટલી રકમ ચૂકવશે?
જો $a_1 , a_2, a_3, . . . . , a_n, ....$ એ સમાંતર શ્રેણીમાં છે કે જેથી $a_4 - a_7 + a_{10}\, = m$ હોય તો પ્રથમ $13$ પદોનો સરવાળો ............ $\mathrm{m}$ મા મેળવો.
સમાંતર શ્રેણીમાં $T_m = n$ અને $T_n = m$ હોય, તો $T_p$ = ……
જો $a, b, c $ સમાંતર શ્રેણીમાં હોય, તો $(a + 2b - c) . (2b + c - a)(a + 2b + c) = ….$
શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.