શ્રેણી $2, 5, 8, 11,…..$ ના $n$ પદોનો સરવાળો $60100$ હોય, તો $n = …..$
$100$
$150$
$200$
$250$
$3$ અને $24$ વચ્ચે $6$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને.
ધારો કે ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ સમાંતર શ્રેણીમાં છે તથા $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ અને ${a_9} + {a_{43}} = 66$. જો $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ તો $m = \;\;..\;.\;.\;.\;$
$\Delta ABC$ માં $A, B, C $ માંથી સામેની બાજુઓ પર દારેલા વેધ સ્વરિત શ્રેણીમાં હોય તો $sinA, sinB, sinC ............. $ શ્રેણીમાં હોય
એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$