નીચે આપેલ માહિતી માટે વિચરણ શોધો.
$6,8,10,12,14,16,18,20,22,24$
From the given data we can form the following Table The mean is calculated by step-deviation method taking $14$ as assumed mean. The number of observations is $n=10$
${x_i}$ | ${d_i} = \frac{{{x_i} - 14}}{2}$ |
Deviations orom mean $\left( {{x_i} - \bar x} \right)$ |
$\left( {{x_i} - \bar x} \right)$ |
$6$ | $-4$ | $-9$ | $81$ |
$8$ | $-3$ | $-7$ | $49$ |
$10$ | $-2$ | $-5$ | $25$ |
$12$ | $-1$ | $-3$ | $9$ |
$14$ | $0$ | $-1$ | $1$ |
$16$ | $1$ | $1$ | $1$ |
$18$ | $2$ | $3$ | $9$ |
$20$ | $3$ | $5$ | $25$ |
$22$ | $4$ | $7$ | $49$ |
$24$ | $5$ | $9$ | $81$ |
$5$ | $330$ |
Therefore $Mean\,\,\bar x = $ assumed mean $ + \frac{{\sum\limits_{i = 1}^n {{d_i}} }}{n} \times h$
$ = 14 + \frac{5}{{10}} \times 2 = 15$
and Veriance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{{10}} \times 330 = 33} $
Thus Standard deviation $\left( \sigma \right) = \sqrt {33} = 5.74$
જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.
જો વિતરણના દરેક પદને $2 $ જેટલું વધારવામાં આવે તો વિતરણનો મધ્ધ્યસ્થ અને પ્રમાણિત વિચલન કેટલું થશે ?
ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.
$20$ અવલોકનોનું વિચરણ $5$ છે. જો પ્રત્યેક અવલોકનને $2$ વડે ગુણવામાં આવે, તો પ્રાપ્ત થયેલ અવલોકનો માટે નવું વિચરણ શોધો.
$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.