निम्नलिखित आँकड़ों के लिए प्रसरण तथा मानक विचलन ज्ञात कीजिए
$6,8,10,12,14,16,18,20,22,24$
From the given data we can form the following Table The mean is calculated by step-deviation method taking $14$ as assumed mean. The number of observations is $n=10$
${x_i}$ | ${d_i} = \frac{{{x_i} - 14}}{2}$ |
Deviations orom mean $\left( {{x_i} - \bar x} \right)$ |
$\left( {{x_i} - \bar x} \right)$ |
$6$ | $-4$ | $-9$ | $81$ |
$8$ | $-3$ | $-7$ | $49$ |
$10$ | $-2$ | $-5$ | $25$ |
$12$ | $-1$ | $-3$ | $9$ |
$14$ | $0$ | $-1$ | $1$ |
$16$ | $1$ | $1$ | $1$ |
$18$ | $2$ | $3$ | $9$ |
$20$ | $3$ | $5$ | $25$ |
$22$ | $4$ | $7$ | $49$ |
$24$ | $5$ | $9$ | $81$ |
$5$ | $330$ |
Therefore $Mean\,\,\bar x = $ assumed mean $ + \frac{{\sum\limits_{i = 1}^n {{d_i}} }}{n} \times h$
$ = 14 + \frac{5}{{10}} \times 2 = 15$
and Veriance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{{10}} \times 330 = 33} $
Thus Standard deviation $\left( \sigma \right) = \sqrt {33} = 5.74$
आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है
यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -
$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $8$ हैं। बाद में यह पाया गया कि एक प्रेक्षण को $40$ के स्थान पर $50$ लिया गया था। तो सही प्रसरण है :
माना $n$ एक विषम प्राकृतिक संख्या है जिसके लिए $1,2,3,4, \ldots, n$ का प्रसरण $14$ है। तो $n$ बराबर .......... है |
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा