निम्नलिखित आँकड़ों के लिए प्रसरण तथा मानक विचलन ज्ञात कीजिए

$6,8,10,12,14,16,18,20,22,24$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

From the given data we can form the following Table The mean is calculated by step-deviation method taking $14$ as assumed mean. The number of observations is $n=10$

${x_i}$ ${d_i} = \frac{{{x_i} - 14}}{2}$

Deviations orom mean 

$\left( {{x_i} - \bar x} \right)$

$\left( {{x_i} - \bar x} \right)$
$6$ $-4$ $-9$ $81$
$8$ $-3$ $-7$ $49$
$10$ $-2$ $-5$ $25$
$12$ $-1$ $-3$ $9$
$14$ $0$ $-1$ $1$
$16$ $1$ $1$ $1$
$18$ $2$ $3$ $9$
$20$ $3$ $5$ $25$
$22$ $4$ $7$ $49$
$24$ $5$ $9$ $81$
  $5$   $330$

Therefore    $Mean\,\,\bar x = $ assumed mean $ + \frac{{\sum\limits_{i = 1}^n {{d_i}} }}{n} \times h$

$ = 14 + \frac{5}{{10}} \times 2 = 15$

and    Veriance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{{10}} \times 330 = 33} $

Thus Standard deviation $\left( \sigma  \right) = \sqrt {33}  = 5.74$

Similar Questions

आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमश : $9$ और $9.25$ हैं। यदि इनमें से छ: प्रेक्षण $6,7,10 , 12, 12$ और $13$ हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।

यदि प्रसरण $v$ तथा मानक विचलन है, तब

माना $a_1$ के सभी मानों, जिनके लिए $100$ क्रमागत धनात्मक पूर्णांको $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots ., \mathrm{a}_{100}$ का माध्य के सापेक्ष माध्य विचलन $25$ है, का समुच्चय $\mathrm{S}$ है, तब $\mathrm{S}$ बराबर है।

  • [JEE MAIN 2023]

किसी असतत् श्रेणी में (जबकि सभी मान समान नहीं हैं) माध्य से माध्य विचलन तथा मानक विचलन के मध्य सम्बन्ध है

माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]