Find the value of:

$\tan 15^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

 $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$

$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \quad\left[\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right]$

$=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$

$=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}}$

$=\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}$

Similar Questions

If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be

If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $

If $\sin x + {\rm{cosec}}\,x = 2,$ then $sin^n x + cosec^n x$ is equal to

Prove that

$3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$

Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$