Find the value of:
$\tan 15^{\circ}$
$\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$
$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \quad\left[\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right]$
$=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$
$=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}}$
$=\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}$
If $A = 130^\circ $ and $x = \sin A + \cos A,$ then
The angle subtended at the centre of a circle of radius $3$ metres by an arc of length $1$ metre is equal to
Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.
If $\sin A,\cos A$ and $\tan A$ are in $G.P.$, then ${\cos ^3}A + {\cos ^2}A$ is equal to
Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$