If $\sin x + {\rm{cosec}}\,x = 2,$ then $sin^n x + cosec^n x$ is equal to

  • A

    $2$

  • B

    ${2^n}$

  • C

    ${2^{n - 1}}$

  • D

    ${2^{n - 2}}$

Similar Questions

If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then

If $\tan \theta = \frac{{x\,\sin \,\phi }}{{1 - x\,\cos \,\phi }}$ and $\tan \,\phi = \frac{{y\sin \,\theta }}{{1 - y\,\cos \,\theta }}$, then $\frac{x}{y} = $

Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.

Let $S_1,S_2$ and $S_3$ be three circles of unit radius which touch each other externally. The common tangent to each pair of circles are drawn and extended so that they  can intersect and form a triangle $ABC$ with circumradius $R,$ then $R$ is equal to

If $x\sin 45^\circ {\cos ^2}60^\circ = \frac{{{{\tan }^2}60^\circ {\rm{cosec}}30^\circ }}{{\sec 45^\circ {{\cot }^2}30^\circ }},$ then $x = $