$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$ ની કિંમત શોધો.
Firstly, the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using Binomial Theorem.
This can be done as
${(x + y)^4} = {\,^4}{C_0}{x^4} + {\,^4}{C_1}{x^3}y + {\,^4}{C_2}{x^2}{y^2} + {\,^4}{C_3}x{y^3} + {\,^4}{C_4}{y^4}$
$=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
${(x - y)^4} = {\,^4}{C_0}{x^4} - {\,^4}{C_1}{x^3}y + {\,^4}{C_2}{x^2}{y^2} - {\,^4}{C_3}x{y^3} + {\,^4}{C_4}{y^4}$
$=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}$
$\therefore(x+y)^{4}+(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)$
Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1},$ we obtain
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}(\sqrt{a^{2}-1})^{2}+(\sqrt{a^{2}-1})^{4}\right]$
$=2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right]$
$=2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]$
$=2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right]$
$=2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2$
જો ${(3 + ax)^9}$ ના વિસ્તરણમાં ${x^2}$ અને ${x^3}$ ના સહગુણક સમાન હોય તો $a$ ની કિમંત મેળવો.
$(x-2 y)^{12}$ ના વિસ્તરણનું ચોથું પદ શોધો.
${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ ના વિસ્તરણમાં ${t^{12}}$ નો સહગુનક મેળવો
$\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1$ ના વિસ્તરણમાં અચળ પદ મેળવો.
${\left( {\frac{{{x^3}}}{3} + \frac{3}{x}} \right)^8}$ ના વિસ્તરણમાં મધ્યમ પદ $5670$ થાય તે માટે $x$ ની વાસ્તવિક કિમતોનો સરવાળો કેટલો થાય ?