दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।
The two-digit numbers, which when divided by $4,$ yield $1$ as remainder, are $13,17, \ldots 97$
This series forms an $A.P.$ with first term $13$ and common difference $4$
Let n be the number of terms of the $A.P.$
It is known that the $n^{th}$ term of an $A.P.$ is given by, $a_{n}=a+(n-1) d$
$\therefore 97=13+(n-1)(4)$
$\Rightarrow 4(n-1)=84$
$\Rightarrow n-1=21$
$\Rightarrow n=22$
Sum of n terms of an $A.P.$ is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{22}=\frac{22}{2}[2(13)+(22-1)(4)]$
$=11[26+84]$
$=1210$
Thus, the required sum is $1210 .$
दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $(7n + 1):(4n + 27)$ है, तो इनके $11$ वें पदों का अनुपात होगा
श्रेणी $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ के $9$ पदों का योगफल है
यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं
माना कि $l_1, l_2, \ldots, l_{100}$ सार्वअंतर (common difference) $d_1$ वाली एक समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद (consecutive terms) हैं, एवं माना कि $w_1, w_2, \ldots, w_{100}$ सार्वअंतर (common difference) $d_2$ वाली एक दूसरी समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद है जहाँ $d_1 d_2=10$ है। प्रत्येक $i=1$, $2, \ldots, 100$ के लिए, माना कि $R_i$ एक आयत (rectangle) है जिसकी लम्बाई $l_i$, चौड़ाई $w_i$ एवं क्षेत्रफल $A_i$ है। यदि $A_{51}-A_{50}=1000$ है तब $A_{100}-A_{90}$ का मान . . . . . .है।
मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है: