Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The two-digit numbers, which when divided by $4,$ yield $1$ as remainder, are $13,17, \ldots 97$

This series forms an $A.P.$ with first term $13$ and common difference $4$

Let n be the number of terms of the $A.P.$

It is known that the $n^{th}$ term of an $A.P.$ is given by, $a_{n}=a+(n-1) d$

$\therefore 97=13+(n-1)(4)$

$\Rightarrow 4(n-1)=84$

$\Rightarrow n-1=21$

$\Rightarrow n=22$

Sum of n terms of an $A.P.$ is given by

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{22}=\frac{22}{2}[2(13)+(22-1)(4)]$

$=11[26+84]$

$=1210$

Thus, the required sum is $1210 .$

Similar Questions

If the first term of an $A.P.$ is $3$ and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first $20$ terms is equal to

  • [JEE MAIN 2025]

In an arithmetic progression, if $S _{40}=1030$ and $S _{12}=57$, then $S _{30}- S _{10}$ is equal to:

  • [JEE MAIN 2025]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$

The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.

  • [JEE MAIN 2023]

The sum of first $n$ natural numbers is