उस वृत्त की त्रिज्या ज्ञात कीजिए जिसमें $60^{\circ}$ का केंद्रीय कोण परिधि पर $37.4$ सेमी लंबाई का चाप काटता है ( $\pi=\frac{22}{7}$ का प्रयोग करें)।
Here $l=37.4\, cm$ and $\theta=60^{\circ}=\frac{60 \pi}{180} radian =\frac{\pi}{3}$
Hence, by $r=\frac{l}{\theta},$ we have
$r=\frac{37.4 \times 3}{\pi}=\frac{37.4 \times 3 \times 7}{22}=35.7 \,cm$
समीकरण ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ तभी सम्भव है जब
निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)
$\frac{5 \pi}{3}$
$\sin 10^\circ + \sin 20^\circ + \sin 30^\circ + ... + $ $\sin 360^\circ $ का मान है
यदि $\tan x=\frac{3}{4}, \pi< x< \frac{3 \pi}{2},$ तो $\sin _{2}^{x}, \cos _{2}^{x}$ तथा $\tan _{2}^{x}$ के मान ज्ञात कीजिए।
निम्नलिखित को सिद्ध कीजिए
$\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$