Find the radius of the circle in which a central angle of $60^{\circ}$ intercepts an arc of length $37.4 \,cm$ ( use $\pi=\frac{22}{7}$ ).
Here $l=37.4\, cm$ and $\theta=60^{\circ}=\frac{60 \pi}{180} radian =\frac{\pi}{3}$
Hence, by $r=\frac{l}{\theta},$ we have
$r=\frac{37.4 \times 3}{\pi}=\frac{37.4 \times 3 \times 7}{22}=35.7 \,cm$
If $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, then ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $
If $A + C = B,$ then $\tan A\,\tan B\,\tan C = $
The value of $\tan ( - 945^\circ )$ is
Find the value of:
$\sin 75^{\circ}$
$\cos 15^\circ = $