Find the radius of the circle in which a central angle of $60^{\circ}$ intercepts an arc of length $37.4 \,cm$ ( use $\pi=\frac{22}{7}$ ).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $l=37.4\, cm$ and $\theta=60^{\circ}=\frac{60 \pi}{180} radian =\frac{\pi}{3}$

Hence, by $r=\frac{l}{\theta},$ we have

$r=\frac{37.4 \times 3}{\pi}=\frac{37.4 \times 3 \times 7}{22}=35.7 \,cm$

Similar Questions

$\tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ ........\tan 89^\circ = $

If $\tan \theta + \sec \theta = {e^x},$ then $\cos \theta $ equals

Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.

If $\tan \theta = \frac{{x\,\sin \,\phi }}{{1 - x\,\cos \,\phi }}$ and $\tan \,\phi = \frac{{y\sin \,\theta }}{{1 - y\,\cos \,\theta }}$, then $\frac{x}{y} = $

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{5 \pi}{3}$