$37.4$ સેમી ચાપની લંબાઈ ધરાવતા તથા કેન્દ્ર આગળ $60^{\circ}$ માપનો ખૂણો બનાવતા વર્તુળની ત્રિજ્યા શોધો. ( $\pi=\frac{22}{7}$ લો ).
Here $l=37.4\, cm$ and $\theta=60^{\circ}=\frac{60 \pi}{180} radian =\frac{\pi}{3}$
Hence, by $r=\frac{l}{\theta},$ we have
$r=\frac{37.4 \times 3}{\pi}=\frac{37.4 \times 3 \times 7}{22}=35.7 \,cm$
જો $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ અને $x\sin \alpha - y\cos \alpha = 0,$ તો ${x^2} + {y^2} = $
$100$ સેમી ત્રિજ્યાવાળા વર્તુળના ચાપની લંબાઈ $22$ સેમી હોય, તો તેણે કેન્દ્ર આગળ બનાવેલ ખૂણાનું અંશ માપ શોધો. ( $\pi=\frac{22}{7}$ લો. ).
સાબિત કરો કે : $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$
જો $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ તો