In a right angled triangle the hypotenuse is $2 \sqrt 2$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are
$\frac{\pi }{3}$ & $\frac{\pi }{3}$
$\frac{\pi }{8}$ & $\frac{3 \pi }{8}$
$\frac{\pi }{4}$ & $\frac{\pi }{4}$
$\frac{\pi }{5}$ & $\frac{3 \pi }{10}$
If $\sin x + {\rm{cosec}}\,x = 2,$ then $sin^n x + cosec^n x$ is equal to
If $A = 130^\circ $ and $x = \sin A + \cos A,$ then
Find, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x=-\frac{1}{3}, x$ in quadrant $III.$
If ${\rm{cosec }}A + \cot A = \frac{{11}}{2},$ then $\tan A = $
If $\sec \theta + \tan \theta = p,$ then $\tan \theta $ is equal to