If $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, and $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ then
$pq = 1$
$\frac{q}{p} = 1$
$q - p = 1$
$q + p = 1$
Which of the following relations is correct
$\frac{{2\sin \theta \,\tan \theta (1 - \tan \theta ) + 2\sin \theta {{\sec }^2}\theta }}{{{{(1 + \tan \theta )}^2}}} = $
Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.
Find the value of:
$\tan 15^{\circ}$
The value of $2 \sin \left(12^{\circ}\right)-\sin \left(72^{\circ}\right)$ is