If $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, and $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ then

  • A

    $pq = 1$

  • B

    $\frac{q}{p} = 1$

  • C

    $q - p = 1$

  • D

    $q + p = 1$

Similar Questions

If $\theta $ and $\phi $ are angles in the $1^{st}$ quadrant such that $\tan \theta = 1/7$ and $\sin \phi = 1/\sqrt {10} $.Then

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$-4$

Find the value of the trigonometric function $\sin 765^{\circ}$

The value of $2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1$ is