If $x = \sec \theta + \tan \theta ,$ then $x + \frac{1}{x} = $
$1$
$2\sec \theta $
$2$
$2\tan \theta $
If $A$ lies in the second quadrant and $3\tan A + 4 = 0,$ the value of $2\cot A - 5\cos A + \sin A$ is equal to
$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ if
Which of the following relations is correct
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant $II$