यदि $\sin \theta + {\rm{cosec}}\theta = 2,$ तो ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ का मान होगा
$6$ रेडियन को डिग्री माप में बदलिए।
${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $${\sin ^2}{85^o} + {\sin ^2}{90^o}$ का मान होगा
$2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1$ का मान है
निम्नलिखित को सिद्ध कीजिए
$\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$