Find the radian measures corresponding to the following degree measures:

$240^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $180^{\circ}=\pi$ radian

$\therefore 240^{\circ}=\frac{\pi}{180} \times 240 \,radian =\frac{4}{3} \pi\, radian$

Similar Questions

Prove that: $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$

If $\cos (\alpha - \beta ) = 1$ and $\cos (\alpha + \beta ) = \frac{1}{e}$, $ - \pi < \alpha ,\beta < \pi $, then total number of ordered pair of $(\alpha ,\beta )$ is

  • [IIT 2005]

If $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, then ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $

$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $

Prove that $\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x$