સમીકરણ $\tan x=-\frac{1}{\sqrt{3}}$ ના મુખ્ય ઉકેલ શોધો.
We know that, $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} .$
Thus, $\tan \left(\pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
and $\quad \tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
Thus $\quad \tan \frac{5 \pi}{6}=\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$
Therefore, principal solutions are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$ .
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\cos 3 x+\cos x-\cos 2 x=0$
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\sec x=2$
સમીકરણ $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ નું સમાધાન કરે તેવી $\theta $ ની $[0, 2\pi]$ કેટલી કિમત છે.
જો $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\sin 2x + \sin 4x = 2\sin 3x,$ તો $x =$