Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that, $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} .$

Thus, $\tan \left(\pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$

and $\quad \tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$

Thus $\quad \tan \frac{5 \pi}{6}=\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$

Therefore, principal solutions are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$ .

Similar Questions

If $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, then the general value of $\theta $ is

If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$

The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is

  • [IIT 2011]

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

The most general value of $\theta $ satisfying the equations $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha $ is

  • [IIT 1971]