Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$
We know that, $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} .$
Thus, $\tan \left(\pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
and $\quad \tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
Thus $\quad \tan \frac{5 \pi}{6}=\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$
Therefore, principal solutions are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$ .
The number of values of $x$ in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are
If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $
$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is