Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$
$\cot x=-\sqrt{3}$
It is known that $\cot \frac{\pi}{6}=\sqrt{3}$
$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$
Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$
Now, $\cot x=\cot \frac{5 \pi}{6}$
$\Rightarrow \tan x=\tan \frac{5 \pi}{6}$ $\left[\cot x=\frac{1}{\tan x}\right]$
$\Rightarrow x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is