Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cot x=-\sqrt{3}$

It is known that $\cot \frac{\pi}{6}=\sqrt{3}$

$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$

i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$

Now, $\cot x=\cot \frac{5 \pi}{6}$

$\Rightarrow \tan x=\tan \frac{5 \pi}{6}$       $\left[\cot x=\frac{1}{\tan x}\right]$

$\Rightarrow x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Similar Questions

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is

The equation $\sqrt 3 \sin x + \cos x = 4$ has

The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$