माना $A$ में 5 अवयव है तथा समुच्चय $B$ में भी 5 अवयव हैं। माना समुच्चयों $A$ तथा $B$ के अवयवों के माध्य क्रमशः $5$ तथा $8$ है और समुच्चयों $A$ तथा $\mathrm{B}$ के अवयवों $12$ तथा $20$ है। $\mathrm{A}$ के प्रत्येक अवयव में से $3$ घटा कर तथा $B$ के प्रत्येक अवयव में $2$ जोड़ कर $10$ अवयवों का एक नया समुच्चय $\mathrm{C}$ बनाया जाता है। तो $\mathrm{C}$ के अवयवों के माध्य तथा प्रसरण का योग है :
$32$
$38$
$40$
$36$
यदि पाँच प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{24}{5}$ तथा $\frac{194}{25}$ हैं तथा प्रथम चार प्रेक्षणों का माध्य $\frac{7}{2}$, है, तो प्रथम चार प्रेक्षणों का प्रसरण बराबर है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?
यदि प्रसरण $v$ तथा मानक विचलन है, तब
पाँच प्रेक्षणों का माध्य $4.4$ तथा इनका प्रसरण $8.24$ है। यदि तीन प्रेक्षण $1, 2$ तथा $6$ हैं, तब अन्य दो प्रेक्षण हैं