माना $n$ प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ है तथा उनका समान्तर माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ है।
कथन $1:\, 2 x_{1} , 2 x_{2}, \ldots , 2 x_{n}$ का प्रसरण $4 \sigma^{2}$ है।
कथन $2:\, 2 x_{1} , 2 x_{2} \ldots . . , 2 x_{n}$ का समान्तर माध्य $4 \bar{x}$ है।
कथन $-1$ असत्य है, कथन $-2$ सत्य है
कथन $-1$ सत्य है, कथन $-2$ सत्य है; कथन $-2$ कथन$-1$ की सही व्याख्या नही है।
कथन $-1$ सत्य है, कथन $-2$ सत्य है; कथन$-2$ कथन $-1$ का सही व्याख्या है।
कथन$-1$ सत्य है, कथन $-2$ असत्य है।
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
गलत प्रेक्षण हटा दिया जाए।
यदि प्रथम $n$ प्राकृत संख्याओं का प्रसरण $10$ है और प्रथम $m$ सम-प्राकृत संख्याओं का प्रसरण $16$ है, तो $m + n$ बराबर है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं
विषय | गणित | भौतिक | रसायन |
माध्य | $42$ | $32$ | $40.9$ |
मानक विचलन | $12$ | $15$ | $20$ |
किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है ?
किसी प्रयोग में $x$ पर $15$ प्रेक्षणों के निम्न परिणाम प्राप्त होते हैं, $\sum {x^2} = 2830$, $\sum x = 170$. प्रेक्षण करने पर एक मान $20$ गलत पाया गया तथा उसे सही मान $30$ से प्रतिस्थापित किया गया। तब सही प्रसरण है...