निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
The data is obtained in tabular form as follows.
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${{x_i} - \bar x}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$92$ | $3$ | $276$ | $-8$ | $64$ | $192$ |
$93$ | $2$ | $186$ | $-7$ | $49$ | $98$ |
$97$ | $3$ | $291$ | $-3$ | $9$ | $27$ |
$98$ | $2$ | $196$ | $-2$ | $4$ | $8$ |
$102$ | $6$ | $612$ | $2$ | $4$ | $24$ |
$104$ | $3$ | $312$ | $4$ | $16$ | $48$ |
$109$ | $3$ | $327$ | $9$ | $81$ | $243$ |
$22$ | $2200$ | $640$ |
Here, $N = 22,\sum\limits_{i = 1}^7 {{f_i}{x_i}} = 2200$
$\therefore \bar x = \frac{1}{n}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{1}{{22}} \times 2200 = 100$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2} = } \frac{1}{{22}} \times 640 = 29.09$
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
$3 n$ संख्याओं का एक समुच्चय है, जिसका प्रसरण $4$ है। इस समुच्चय में, प्रथम $2 n$ संख्याओं का माध्य $6$ है तथा शेष $n$ संख्याओं का माध्य $3$ है। प्रथम $2 n$ संख्याओं में प्रत्येक में $1$ जोड़कर तथा शेष $n$ संख्याओं में प्रत्येक से $1$ घटा कर एक नया समुच्चय बनाया गया है। यदि नये समुच्चय का प्रसरण $k$ है, तो $9 k$ बराबर .............. है ।
$15$ संख्याओं के माध्य व प्रसरण क्रमशः $12$ व $14$ हैं।
$15$ और संख्याओं के माध्य व प्रसरण क्रमशः $14$ व
$\sigma^2$ हैं। यदि सभी 30 संख्याओं का प्रसरण $13$ है, तो
$\sigma^2$ बराबर है
$10$ प्रेक्षणों $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ के लिए $\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2$ तथा $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$ हैं, जहाँ $\alpha$ तथा $\beta$ धनात्मक पूर्णांक है। माना इन प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{6}{5}$ तथा $\frac{84}{25}$ है। तो $\frac{\beta}{\alpha}$ बराबर है:
बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?