यदि समीकरण $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$ को संतुष्ट करने वाले अंतराल $[-\pi, \pi]$ में $\theta$ के धनात्मक तथा ऋणात्मक मानों की संख्या क्रमशः $m$ तथा $n$ है, तो $\mathrm{mn}$ बराबर है____________.
$25$
$24$
$23$
$22$
${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ का व्यापक हल है
$\theta $ का वह मान, जो समीकरण $\cos \theta + \sqrt 3 \sin \theta = 2$ को सन्तुष्ट करता है, है
$k$ के निम्न पूर्णांक मानों की संख्या जिसके लिये समीकरण $7\cos x + 5\sin x = 2k + 1$ का एक हल होगा
समीकरण $2 \sin 3 x+\sin 7 x-3=0$ के ऐसे वास्तविक समाधानों की संख्या जो अन्तराल $[-2 \pi, 2 \pi]$ के बीच है, निम्नलिखित है
यदि ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ तो $\theta $ व $\phi $ के मान हैं