આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin x+\sin 3 x+\sin 5 x=0$
$\sin x+\sin 3 x+\sin 5 x=0$
$(\sin x+\sin 5 x)+\sin 3 x=0$
$\Rightarrow\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0$ $\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow 2 \sin 3 x \cos (-2 x)+\sin 3 x=0$
$\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0$
$\Rightarrow \sin 3 x(2 \cos 2 x+1)=0$
$\Rightarrow \sin 3 x=0 \quad$ or $\quad 2 \cos 2 x+1=0$
Now, $\sin 3 x=0 \Rightarrow 3 x=n \pi,$ where $n \in Z$
i.e., $x=\frac{n \pi}{3},$ where $n \in Z$
$2 \cos 2 x+1=0$
$\Rightarrow \cos 2 x=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \cos 2 x=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 x=2 n \pi \pm \frac{2 \pi}{3},$ where $n \in Z$
$\Rightarrow x=n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{3}$ or $n \pi \pm \frac{\pi}{3}, n \in Z$
જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$
સમીકરણ $\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ ના $(0, \pi)$ માં ઉકેલોની સંખ્યા મેળવો.
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.
જો $2{\tan ^2}\theta = {\sec ^2}\theta , $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.