Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$
$\sec ^{2} 2 x=1-\tan 2 x$
$\Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x$
$\Rightarrow \tan ^{2} 2 x+\tan 2 x=0$
$\Rightarrow \tan 2 x(\tan 2 x+1)=0$
$\Rightarrow \tan 2 x=0 \quad$ or $\quad \tan 2 x+1=0$
Now, $\tan 2 x=0$
$\Rightarrow \tan 2 x=\tan 0$
$\Rightarrow 2 x=n \pi+0,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2},$ where $n \in Z$
$\tan 2 x+1=0$
$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$
$\Rightarrow 2 x=n \pi+\frac{3 \pi}{4},$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2}+\frac{3 \pi}{8},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{2}$ or $\frac{n \pi}{2}+\frac{3 \pi}{8}, n \in Z$
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is
The equation $\sin x\cos x = 2$ has
If $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ then $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$