Find the general solution of the equation $\sin 2 x+\cos x=0$
$\sin 2 x+\cos x=0$
$\Rightarrow 2 \sin x \cos x+\cos x=0$
$\Rightarrow \cos x(2 \sin x+1)=0$
$\Rightarrow \cos x=0 \quad$ or
$2 \sin x+1=0$
Now, $\cos x=0 \Rightarrow \cos x=(2 n+1) \frac{\pi}{2},$ where $n \in Z$
$2 \sin x+1=0$
$\Rightarrow \sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \frac{7 \pi}{6}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $(2 n+1) \frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{7 \pi}{6}, n \in Z$
If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is
The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-
The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to
The number of solutions that the equation $sin5\theta cos3\theta = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is