The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to

  • A

    $\theta = {150^o}$ and ${300^o}$

  • B

    $\theta = {120^o}$ and ${300^o}$

  • C

    $\theta = {60^o}$ and ${240^o}$

  • D

    $\theta = {150^o}$ and ${330^o}$

Similar Questions

General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is

  • [IIT 1996]

The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

  • [IIT 1988]

If $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ then $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ is equal to

  • [JEE MAIN 2017]

The general solution of $\tan 3x = 1$ is

The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is