The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to
$\theta = {150^o}$ and ${300^o}$
$\theta = {120^o}$ and ${300^o}$
$\theta = {60^o}$ and ${240^o}$
$\theta = {150^o}$ and ${330^o}$
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
If $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ then $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ is equal to
The general solution of $\tan 3x = 1$ is
The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is