The number of solutions that the equation $sin5\theta cos3\theta = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is
$4$
$5$
$6$
$7$
The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is
If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $
The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$