The number of solutions that the equation $sin5\theta cos3\theta  = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is

  • A

    $4$

  • B

    $5$

  • C

    $6$

  • D

    $7$

Similar Questions

The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is

  • [KVPY 2017]

If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $

The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$