If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is
$\left( {n + \frac{1}{2}} \right)\frac{\pi }{3}$
$\left( {n + \frac{1}{2}} \right)\,\pi $
$\left( {2n \pm \frac{1}{2}} \right)\frac{\pi }{3}$
None of these
If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are
Common roots of the equations $2{\sin ^2}x + {\sin ^2}2x = 2$ and $\sin 2x + \cos 2x = \tan x,$ are
If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$
Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.