निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\cos 4 x=\cos 2 x$
$\cos 4 x=\cos 2 x$
$\Rightarrow \cos 4 x-\cos 2 x=0$
$\Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$
$\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow \sin 3 x \sin x=0$
$\Rightarrow \sin 3 x=0$ or $\sin x=0$
$\therefore 3 x=n \pi$
or $\quad \sin x=0$
$\therefore 3 x=n \pi$
or $x=n \pi,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{3}$
or $x=n \pi,$ where $n \in Z$
समीकरण $\sqrt 3 \sin x + \cos x = 4$ के हल होंगे
यदि $\tan \theta = - \frac{1}{{\sqrt 3 }}$ व $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, तो $\theta $ का मुख्य मान होगा
यदि $4{\sin ^4}x + {\cos ^4}x = 1,$ तब $x = $
समीकरण $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ को सन्तुष्ट करने वाला $\theta $ का व्यापक मान है
निम्न में से किस समीकरण का एक मूल $\alpha=\sin$ $36^{\circ}$ है ?