Find the general solution of the equation $\cos 4 x=\cos 2 x$
$\cos 4 x=\cos 2 x$
$\Rightarrow \cos 4 x-\cos 2 x=0$
$\Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$
$\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow \sin 3 x \sin x=0$
$\Rightarrow \sin 3 x=0$ or $\sin x=0$
$\therefore 3 x=n \pi$
or $\quad \sin x=0$
$\therefore 3 x=n \pi$
or $x=n \pi,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{3}$
or $x=n \pi,$ where $n \in Z$
The values of $\theta $ satisfying $\sin 7\theta = \sin 4\theta - \sin \theta $ and $0 < \theta < \frac{\pi }{2}$ are
$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $
If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is
The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be