આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(0,\, \pm \sqrt{5})$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(±1,\,0)$
Ends of major axis $(0, \,\pm \sqrt{5}),$ ends of minor axis $(±1,\,0)$
Here, the major axis is along the $y-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a =\sqrt{5}$ and $b=1$
Thus, the equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$
જો ઉપવલય $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ એ રેખા $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ ને $x$- અક્ષ પર મળે છે અને રેખા $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ ને $y$-અક્ષ પર મળે છે તો ઉપવલયની ઉકેન્દ્રીતા . . . થાય.
જેની પ્રધાનઅક્ષ $x -$ અક્ષ અને કેન્દ્ર ઉંગમબિંદુ હોય તેવા ઉપવલયના નાભીલંબની લંબાઈ $8$ છે જો બંને નાભીઓ વચ્ચેનું અંતર તેની ગૌણઅક્ષની લંબાઈ જેટલું હોય તો નીચેનામાંથી ક્યું બિંદુ ઉપવલય પર આવેલ નથી ?
જો $-4/3$ ઢાળવાળો ઉપવલય$\frac{{{x^2}}}{{18}}\,\, + \;\,\frac{{{y^2}}}{{32}}\,\, = \,\,1$ નો સ્પર્શક, પ્રધાન અક્ષ અને ગૌણ અક્ષને અનુક્રમે $A$ અને $B$ માં છેદે તો $\Delta OAB$ નું ક્ષેત્રફળ .......... ચો. એકમ
ધારો કે $L$ એ વક્રો $4 x^{2}+9 y^{2}=36$ અને $(2 x)^{2}+(2 y)^{2}=31$ ની સામાન્ય સ્પર્શરેખા છે. તો રેખા $L$ ના ઢાળનો વર્ગ ....... થાય.
ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :